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ON THE PROBLEM OF A THREE-DIMENSIONAL CRACK 
IN AN ANISOTROPIC ELASTIC MEDIUM* 

S.K. KANAUN 

A three-dimensional problem of elasticity theory for a homogeneous and anisotropic 
medium containing an isolated crack is considered. As a result of using a known 
analogy between a crack and a Somigliana dislocation, the problem is reduced to the 
solution of an elliptic pseudo-differential equation in the density of the disloca- 
tion moments simulating the crack. The properties of the operator in this equation 
are investigated. A regular representation of this operator is obtained in the 
class of sufficiently smooth functions. The possibility of applying the proposed 
regularization to a numerical solution of the problem is discussed. The structure 
of the tensor stress intensity factor on the smooth outline ofanarbitrary crack in 
an anisotropic medium is analyzed. 

1. Dislocation model of a crack. Let us consider an infinite homogeneous and aniso- 
tropic elastic medium in which there is a slit on a smooth bounded surface Q (a three-dimen- 

sional crack). We shall consider the external stress field OO(z) (the strain Eg (Z)) to be 
realized by loads applied at infinity, and the edges of the crack to be free of external loads 

(z (x1, x2. z3) is a point of the medium) . 
If the edges of the crack are not joined during loading of the medium, then the boundary 

condition on Q has the form 

II, (z)@fi (z) = 0, z E n (1.1) 

where n(z) is the normal to the surface & and e(z) is the stress tensor. 

In cases when the crack edges make contact, the boundary conditions on Q will be more 

complex, depending on the nature of the edge interaction. 

The displacement vector u(x), which is a continuous function in all space, with the ex- 

ception of the surface Q, corresponds to the solution of this problem. On passing through 

D the function u(z) varies by a jump since the crack edges in the field G,,(X) are displaced. 

(For external fields in which the relative displacement in the crack edges is lacking, 

the problem has the trivial solution s (r) = 00 (m)) . 
Let us also note that in the absence of mass forces the stress tensor O(Z) in a medium 

with a crack will satisfy the equation div o(x) = 0 in the whole space including the surface 

Q also. 
The presence of a finite jump in the displacement field u(z) on 12as well as the ment- 

ioned property of the stress tensor permit interpreting the crack as a Somigliana dislocation 

induced by the external field /1,2/. As is known, the latter is a slit in an elastic medium 

whose edges are displaced by a given vector b (m). The cavities being formed here fill the 

material of the initial medium (or remove the excess material), execute juncture of all the 

surfaces making contact, and then remove the forces which displaced the slit edges. In the 

case of a crack, the vector b (x) is not known in advance and should be selected sothatthe 

total stress tensor (external and internal) would satisfy the given boundary conditionsonthe 

edges of the slit. 
Let us examine the fundamental corollaries of the analogy mentioned. The singulardensity 

of the dislocation moments m(2) which corresponds to a Somigliana dislocation, has the form 

/3/ 

Here S(Q) is a delta function concentrated on the surface Q and b(5) = U+(X)- u-(z) is the 

jump in the displacement vector on Q which agrees in the case of a crack with the vector of 

its opening, the plus sign denotes the limit value of the vector u on Q from the normal side, 

and the minus sign from the opposite side. 
The stress field in a medium with a crack can now be represented in the form of a sum of 

the external field o,(z) and the internal stresses due to the dislocation moments of the 
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density (1.2). The strain tensor E(X) also allows of an analogous representation. Using the 

results of the continuumtheoryof dislocations /3/, we have 

(1.3) 

(1.4) 

The kernel u(x) of the integral operator in (1.3) is expressed in terms of the Green's 
tensor for the displacement G(s) of the initial (homogeneous) medium with the elastic modulus 
tensor by the formula ca5L 

tr$(,)= -[c,v&5Vc~";*~]~,5) (1.5) 

where 'i', the gradient operator in R", is a three-dimensional Euclidean space and the 
parentheses denote symmetrization in the corresponding subscripts. 

In turn, the kernel S(r) of the integral operator in (1.4) is expressed in terms of the 
Green's tensor for the internal stresses Z(z) of the initial medium (e"5' istheLevi-Civitta 
symbol) 

xt can be shown /3/ that the tensors u and S are connected 
the Dirac delta function) 

S"ehr"(,)=CaBVPUI;::(~)- c~5~~i? (z) 

by the relationship (s(r) is 

(1.7) 

Let us note that the tensor E defined by the relationship il.31 equals the sum of the 
elastic f's and "plastic" mca5) components, where d and m have the form (1.4) and (1.21, 
respectively. 

The Green's tensor for the displacement G(x) satisfies the equation 

V,c"Bh"V,G,,~s)=--G,Rfi(~) (1.8) 

where 6pa is the Kronecker symbol, and the Green's tensor for the internal stresses x(X) sat- 
isfies the system of second oxder partial differential equations presented in /3/.Theexplicit 
expressions for G(.z)and Z(.z)are known only in particular cases for symmetry of the medium 
/4/. In the general case G(x) and Z(Z) are even homogeneous functions of degree -1. It 
then follows from (1.5) and (1.6) that U(x)and S(z) axe even homogeneous generalized func- 
tions of degree -3. 

Let us note that it is possible to arrive at relationships of the form (1.3) and (1.4) by 
representing the solution of the elastic problem u(r) in the form of a sum of the vector pot- 
ential of the external field NO(Z) and the potential of a double layer with the density 5 W 
lumped in Q (see /5/, for instance). The expression fox c(s) will hence agree with (1.31, 
and the expression for o(z) with (1.4) if the first term in the right side of (1.7) is taken 
as the kernel Sfz). The stress field obtained in such a manner will differ from o(z) in the 
form (1.41onlyby the singular component - &%ll (~fb& (I)& (a), lumped on the crack surface Q. 

The mentioned difference is due to the fact that in selecting tie solution in the form 
of a double layer potential, the crack is not modeled by dislocation but by force singularit- 
ies, by a certain distribution of force dipoles in Q /6/. The appropriate field o(x) hence 
contains a singular component lumped in B and satisfies the equation 

where (I(Z) is the singular moment density of the force dipoles modeling the crack. 
Let us note that the tensor O(Z) of the form (1.4) satisfies the equation diva(s)= 0 in 

all space, as follows from the representation (1.6). If R is a Liapunov surface, and the 
denisty b(x) is twice differentiable on 9, then the vector of the forces 
corresponding to the stresses (1.41, 

fU(d = "5 (5) @5(r) , 
will be a continuous bounded function in all space with 

the exception, perhaps, of the contour I', the boundary of Q 11‘2,'. (Here 11 (r) is under- 
stood to be an arbitrary smooth continuation of the field of the normal given on R, in R3). 

Let us now write the equation for the vector field b(x) on Sz. From the relationship 
(1.4) and the boundary condition (1.1) we have 

(T”@b,) (x) = 1 F@ (x, 2’) be (2’) cm = np (G) 00”” (x), x E a 
$6 

(1.91 
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Tap (2, x’) = -ni* (x) is-@* (x - x’) ?z., (x’) 
(1.10) 

The stresses and strains in a medium with a crack are reproduced uniquely from the relation- 
ships (1.31 and (1.4) in the vector field b (~1. 

Let us note that the operator T in (1.9) can be written in the form of an integral 
operatorwith the kernel T(x,x') only provisionally since the corresponding integral diverges 
formally for ZEQ for arbitrarily smooth b(x) (T (I, x') - (3: -z' lw3 as X)+X). 

Let us turn to an investigation of the properties of the operator T and the construction 
of the regularization formula for the integral in (1.9). 

2. The generalized function T(x). We start with the case when P is a plane in R" 
with the equation XR = 0 @1,x2, X8 are Cartesian coordinates in Rs), and b(x,,z,) is a function 
of the class s(R*)in 52 /7/. Here YZ = const and the kernel T(x,x’) in (1.9) depends onlyon 
the difference of the arguments s-x'. Therefore, T is the convolution operator with the 
generalized function T(x) acting on the fundamental functions from S (R2). 

Let us note that the function T(x) = T(;r,, XJ is generated by the generalized function 
s (51, xl, x3) defined by the relationship (1.6) (or (1.7)~andactingonthef~danlental functions 
in R3. From (1.10) we have 

It hence follows that the Fourier transform of the function T&z,+ .q) has the form 
1 

Here and below, the Fourier transform of a function has the argument k and its x-representa- 
tion the argument .z. 

From (1.7), (1.5) and (1.8) we have 

S@l* (k,, k?, k3) = cafiv~$GyS (k,, k,, kJ ko&+ - c+fl 12.3) 

G (k) = L-” (k), Lao (k,, k,, k3f = cG~~k~~c~ 

By using these relationships it can be established that the integral in (2.2) converges absol- 
utely and defines the even homogeneous function T (k) of the first degree in k (k,, kJ. 

The action of the generalized function T(z) on any fundamental function cp (5) E S (R2) 
can now be determined by the relationship 

(2.4) 

which follows from the Parseval formula. The last integral converges absolutely. 
Let us obtain a regularized expression for (T, cp) by using the formal expression of the 

generalized function T(z) in x-space. We note first that T(k) can always be represented 
in the form 

T”@(k) = -Qafin@ (k) k&k,, Q@P (k) = - T@ (k)k” k@ 1 k j-4, h, p ==I, 2 (2.5) 

where k = k (k,, k,), and Q(k) is an even homogeneous function of degree --1. Therefore, 

there exists a Q(Z), an even homogeneous function of degree -1. This function is integrable 
at zero and because of (2.5) is related to T(x) by means of the relationship 

Tao (2,. .x2) = VhV,, Qafiku (~1. x2), h, p = 1, 2 (2.6) 

We use a scheme that is proposed /8/ for the construction of the regularization of gener- 
alized functions of the type of derivatives of homogeneous regular functionals. Let w be a 

domain in HZ with a smooth boundaryy, forwhichthepoint m = 0 where the function T(z) is not 

integrable, is an interior point, while G is the complement of 0 in all space. 
By definition of the derivative of a generalized function, we have for any fundamental 

'('(2) (subscripts have been omitted for simplicity) 

It is taken into account here that VQ (4 is a homogeneous function of degree -2 in 

R”, and the representation presented in /8/ is used for its reqularization,v(x) istheexternal 
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normal to the contour y? V is the gradient in RZ. 
Now, transferring the derivative in the first integral into QQ, we obtain by taking 

account of (2.6) 

Let w be a circular domain of radius p. If p-0, then the second integral in this 
relationship will vanish since Q(X) _ Ix I-l, the contour integrals over y vanish because of 
the evenness of Q(r), and the first integral tends to an integral in the Cauchy principal 
value sense and exists because of the definiteness of (T,(I). Therefore, the regularization 
of the generalized function T(z) takes the form 

(3',q) = 5 T (X) IT (5) - q fC))ldX (2.7) 

where the bar denotes an integral in the Cauchy principal value sense, and integration here 
is over the whole plane Ra. 

Let us note that the scheme elucidated is extended to the case of a space of any dimen- 
sionality n>,l, and the regularization of (2.7) holds for every homogeneous generalized 
function in la=, whose Fourier transform is an even homogeneous function of degree 1. 

3. Regular representation of the operator T by functions from C=(Q) 
As before, let St be the plane x8 = 0. The convolution operator with the generalized fun- 

ction T (z) in (1.9) can be determined in functions from S (RZ) by means of the formula 

(3.1) 

Here T(k;,k,) has the form (2.2), ~- and the integral is here absolutely convergent (by s(R%)). 
The representation (3.1) shows that T is a pseudo-differential operator with the symbol 

2'0% kg) /7/. 
We obtain another formula for the regular representation of the operator T in functions 

from &'(R2) by using the relationships (2.7) 

(2%) (2) = 5 T (5 -x') 16 (5') - b (s)l& (3.2) 

Here the integral is evaluated over the whole plane St, where continuous differentiability 
and boundedness of b(x) in D for any XE '&? are sufficient for its existence. 

Now, let us turn to the case when Q is a smooth simply connected surface in R3, bounded 
by the contour r, and b(x)E c”; (a). Let us note that the three-dimensional Fouriertransform 
of the function S(r), which generates the kernel T(s, 5') of the operator T, has the form 
(2.2) and is a homogeneous function of zero degree in k. The pseudo-differential operator 
with symbol s(k) allows the following regular representation in functions from s(RS) (D is 
a known constant) /7/: 

(S$) (r) = j S (r A x')J> (z’)dz L= j S (x - z’)$ (x’fdz’ + DJ, (z), 9 (z) E 5’ (R3) (3.3) 

Let hi(z) be a sequence of functions from s(Kl) that converges to 6(Q) as i- x . 
We predefine n(r) and b(z) given on n in the whole space RSby using an arbitrary smooth 
continuation. Then the action of an operator T on any b(z)) C‘ (S1) can be determined by the 
formula 

(Tb) (z) = -1imn (z) f S (z - s')s (.z’)b (CC)& (.z’)dz’, 5 E 52 
2--r* (3.4) 

where the integral over RS is understood in the sense of the regularization of (3.3). 
Furthermore, taking account of (1.6) for S(x) and the Stokes theorem, we havetheequal- 

ity 

(3.5) 

where dr, is a vector element of length on the contour r, whose orientation is matched to 
the orientation of B by the usual rule. 

Using (3.4) and (3.51, we represent (Tbffz) in the form 

(Tb) (r) = -!I: n (r) 5 s (z --z') n (5') Ib (2’) - b (x)1 hi (cc’) dx’ +n (r) $ n (X - ~‘1 dI”b (I), JEG 

l-P@@ (5) = - rot~*?z(“~v~’ (z) 



266 S.K. Kanaun 

Taking account of the regularization of (3.3) and passing to the limit as i -+ cm, we obtain 
the final formula for the representation of the operator T by functions from C-(Q) 

(?bs) (x)= 4 T@ (zr.3’) [bfi (x’) - bB (x)1 m $- n, (L) 4 rPfl* (1 -J.‘) dl?p’bl, (I). .L’ F_ R 
$2 F 

Here the first integral in 51 is understood in the Cauchy principal value sense, and exists 
because of the existence of the integral in (3.2). 

Let us note that it is sufficient for the existence of the integrals in (3.6) that the 

function b(z) be continuously differentiable on 51 and vanish on r. By continuity, the 
operator T is continued to an unbounded operator from H, $2) into H,_1 (a) and is a general- 
ized pseudo-differential operator with a principal homogeneous symbol, a homogeneous function 

of degree one. 

The equation 

W) (4 = f (4, x E Q 
(3.7) 

0 
has the unique solution bE Hb+lz(P) for Jo Hp,2(62) where 16 1 <I/% is arbitrary. (The de- 
finition of Sobolev-Slobodetskii functional spaces H, (8) and H,” (Q) is found in /7/). The 
appropriate theorem is proved in /7/. 

For a function j(z) infinitely differentiable in 8, the asymptotic of the solution of 
(3.7) near a smooth boundary, the contour r, has the form /7/ 

b (z) = p (q,) 1/r + 0 (r’,‘>) (3.8) 

where r is the distance from the point ZE a to -zO E r along the normal to I', and p (so) is 

a function infinitely differentiable along r . 
Now, we consider T as an operator in the Hilbert space L,(B)= H,(Q). We considerthe 

domain of definition T functions from the space Co" (8) compact in _&(a) of finite infinitely 

differentiable functions in P, whose carrier is concentrated in internal subdomains of 9. 

It can be shown that T is a positive operator. 

Let Us be the displacement vector, and al(z) the internal stress tensor in a medium 

with dislocation moments of density n,(~)b~(~)(n~c" (Q), b EC”- (Q)) distributed on the surface 

Q. It follows from (1.4) and (1.10) that (Tb)(?) is the value of the vector -n, (s)op@ (2) 

on 0. 

Let Q+ denote the positive, and R-the negative side of the surface 52, whoseselection 

is determined by the orientation of the normal n. Let us consider the integral 

where it is taken into account that b (.z) = ul+ (.r) - ul- (5). 

Let us apply the Ostrogradskii formula to the right side. Taking into account that 

diva,(z) = 0. we obtain 

R?R RI-\Q 
Here we used the equality ape = ,a@!+ 

lhfl' which is valid outside Q, the integral over R3\Q 

converges since E~(+)-(+(-~ at infinity, and the field el(z) is bounded in the neighborhood 

of S1 for b E C,” (9) . The last inequality in (3.9) is a consequence of the positive definit- 

eness of the tensor Pew. 

Therefore I (b) = (Tb, b) & 0, where equality is achieved only for b = 0. Therefore, T is 

a positive operator which is moreover symmetric, as can be verified by using (1.10). 

The property obtained for the operator T permits the assertion that the solutionof (3.7) 

yields the minimum of the functional 

F (b) = \ (TaBbe) b, di2 - 2 d j=b,dO 
ir 

and, therefore, direct variational methods /9/ can be used for an approximate evaluation of 

b (2) . 
Remark on the numerical solution of (3.7). If the explicit expression for 

the function T (I. z') is known , then the scheme, examined in /5/, say, can be used 

for the solution of (3.7). Let us partition the surface Q into N subdomains Pi. We approx- 

imate the function b(z) within each subdomain Bi by a linear combination of standardfunctions 

with unknown coefficients. Substituting b(r) in such form into (3.7), we obtain a system of 
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linear equations in the constant coefficients of the approximation. 
In particular, if b (x) = const for I: E Qi, then the system to determine the vectors b'(i=: 

1, 2,. . ., N) , the ValUeS of h(s) Within Qi, takes the form 

(3.10) 

where fi := f(q) is the value of the right side of (3.7) at a nodal (interior) point zi of the 
domain Qi, and the tensors Tij are determined by the relationship 

Tij == s 1‘ (z,, 5’) d”’ 

% 

For i+j the integrand has no singularities in Pj, and this integral can be evaluated 
by any approximate method. 

If i= j, the preceding formula becomes meaningless, and the regularization (3.6) should 
be used to evaluate the elements Tii a Since h= const in Qj, the first term on the right in 
(3.61 vanishes and 

where I"$ is the boundary contour of the domain !&, 7iZ T$. 
If the contour Ti lies entirely in one plane o<, then the relation (3.2) can be used 

instead of the regularization (3.6). Then Ti, is represented in the form of an absolutelycon- 
vergent integral 

Tit -J T (Zi, Z’) d:!’ 

ai 

where i& is the part of the plane oi outside the contour Ti. The formulas presented here 
facilitate realization of the method of solution under consideration substantially. Tedious 
schemes to evaluate the elements Tii were proposed in /5,10,11/, and examples of the solution 
of the system (3.10) are given there. 

4. Tensorial stress intensity factor on the crack contour. Let US consider-the 
asymptotic of the stress field a(x)outs the crack in the neighborhood of its edge r. Let 

Y,* YD Ys be local Cartesian coordinates at the point x,E r, where the Y, axis is directed 
along the limit normal to 52 at the point X0, the Y, axis is along the tangent to r, then 
the Yt axis lies in the tangent plane to 8 at the point x0. Taking account of the asymp- 
totic (3.8), we have an asymptotic of the vector b in the neighborhood of x0 

b (Y) = B @0) l/Y, + O(Yl"9 

Using (1.4), we write an expression for u at the point z =(-rcos 0, 0, --sine), where r is 
the spacing between the point z and the origin of the Yi coordinate system, and 8 is the polar 
angle in the plane (Ya Y,) 

a(z)= aa ++ S S j-x@ + B. ES, sine 4- ES) X n (6)B (FLl) r/l;d$, + 0 (f;)t Ei=r-‘Yi 

Q<O 
(4.1) 

It is taken into account here that S(x)is homogeneous, of degree -3, an even function. It 
can be shown that as r+O the integral tends to a finite limit , and the stresses therefore 
have the singularity +!I_ 

Let us consider the tensor function J(6, so) (the tensorial stress 
which is of interest for applications and is defined by the relationship 

J (0, x0) = 1imJGa (z), r - 0 

It follows from (4.1) that 

o(z)=+J(e,20)+0(1) 

and the components of the tensor Shave the form 

Jae (8, %) = flair@ (8)~ (r@) Bli (r@) 

intensity factor), 

(4.2) 

(4.3) 
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where n w is the limit value of the normal to a at the point X0 E r. 
It is hence seen that the function J(6,xtt) is representable in the form of two factors, 

the first of which so is independent of the shape of the surface a and the external 
field applied to the medium , and is determined by the local orientation of the axes 
at the point x,E r. The second factor, the vector @(x0), 

Y,? $2, Ys 
is a functional of the whole sur- 

face Q and the external field oo(x). 
The function J (6, x0) allows of graphical interpretation if it is taken into accountthat 

is substantially an analog of the tensor s (X) in the plane problem of deformation and com- 
plex shear (in the dimensionless coordinates Et) of a homogeneous medium with the moduli 
@RiW, where the normal to the plane of deformation (&, fs) is directed along the Ez axis. 
The tensor J@,zo) here agrees with the stress tensor at the point & = -cos 8, Es = -sin e, 
when a jump in the displacement vector which varies according to the law @{Xo)y'E1 is given 
along the positive E1 semi-axis. 

Let us note that the tensor s(X) is expressed for the plane case in terms of the Green's 
function G(x) of the plane problem by means of formulas analogous to (1.5) and (1.7). 

In the plane case, the explicit expression is known for the function G(Z) for arbitrary 
anisotropy of the tensor of the elastic constants, hence, construction of a tensor s(e) of 
the form (4.3) reduces to evaluation of the standard integrals, and its expression can also 
be found explicitly. 

The tensor J can be represented in the form of the sum of three tensors corresponding 
to three components of the vector b(XO)in the axes Yn Y8, Ya 

J = J, + J, + J,; Ji”P (0, x0) = s=fihi (G)nh (s~)~~ (x0) (4.4) 

(no summation over i!). 
The tensors @"l(0) and flfih3(6) are found from the solution of the corresponding plane 

problem, and .s@~~ (8) from the solution of the antiplane problem (complex shear). 
Let us note that the asymptotic of the stress field in the neighborhood of a crack edge 

is usually characterized by the stress intensity factors g,, XII, % in the theory of 
elasticity and fracture mechanics (see /12/, for instance). Ey using the definition of these 
coefficients, it can be shown that their relation to the tensor components Ji (%,T*) is given 

by 
ii, (50) = 1/zn&=(O,so), K,, (30) = Vc2nJ," (0, WI), K,,, ($0) =i/z.Q (0, so) 

From here and (4.4) it follows that to the accuracy of constant factors dependent on the 
elastic constants, the stress intensity factors agree with the components of the Vector p(Q). 
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